3.9.19 \(\int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx\) [819]

3.9.19.1 Optimal result
3.9.19.2 Mathematica [A] (verified)
3.9.19.3 Rubi [B] (verified)
3.9.19.4 Maple [A] (verified)
3.9.19.5 Fricas [F]
3.9.19.6 Sympy [F]
3.9.19.7 Maxima [F]
3.9.19.8 Giac [F]
3.9.19.9 Mupad [F(-1)]

3.9.19.1 Optimal result

Integrand size = 23, antiderivative size = 75 \[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {2 b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a^2 d}+\frac {2 b^2 \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 (a+b) d} \]

output
2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/ 
2*c),2^(1/2))/a/d-2*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elli 
pticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+2*b^2*(cos(1/2*d*x+1/2*c)^2)^(1/2) 
/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/(a+b),2^(1/2))/a^2/( 
a+b)/d
 
3.9.19.2 Mathematica [A] (verified)

Time = 10.68 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.08 \[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=-\frac {2 \left (a E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )-(a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+b \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a^2 d \sqrt {\sin ^2(c+d x)}} \]

input
Integrate[Sqrt[Cos[c + d*x]]/(a + b*Sec[c + d*x]),x]
 
output
(-2*(a*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] - (a + b)*EllipticF[ArcSi 
n[Sqrt[Cos[c + d*x]]], -1] + b*EllipticPi[-(a/b), ArcSin[Sqrt[Cos[c + d*x] 
]], -1])*Sin[c + d*x])/(a^2*d*Sqrt[Sin[c + d*x]^2])
 
3.9.19.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(156\) vs. \(2(75)=150\).

Time = 1.03 (sec) , antiderivative size = 156, normalized size of antiderivative = 2.08, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.609, Rules used = {3042, 4752, 3042, 4339, 3042, 4274, 3042, 4258, 3042, 3119, 3120, 4336, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 4339

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b^2 \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)}dx}{a^2}+\frac {\int \frac {a-b \sec (c+d x)}{\sqrt {\sec (c+d x)}}dx}{a^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}+\frac {\int \frac {a-b \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}\right )\)

\(\Big \downarrow \) 4274

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}+\frac {a \int \frac {1}{\sqrt {\sec (c+d x)}}dx-b \int \sqrt {\sec (c+d x)}dx}{a^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}+\frac {a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-b \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}+\frac {a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx-b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{a^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}+\frac {a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}+\frac {\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}+\frac {\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}\right )\)

\(\Big \downarrow \) 4336

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))}dx}{a^2}+\frac {\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2}+\frac {\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}\right )\)

\(\Big \downarrow \) 3284

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 d (a+b)}+\frac {\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}\right )\)

input
Int[Sqrt[Cos[c + d*x]]/(a + b*Sec[c + d*x]),x]
 
output
Sqrt[Cos[c + d*x]]*(((2*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqr 
t[Sec[c + d*x]])/d - (2*b*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqr 
t[Sec[c + d*x]])/d)/a^2 + (2*b^2*Sqrt[Cos[c + d*x]]*EllipticPi[(2*a)/(a + 
b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*(a + b)*d))*Sqrt[Sec[c + d*x] 
]
 

3.9.19.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4336
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[d*Sqrt[d*Sin[e + f*x]]*Sqrt[d*Csc[e + f*x]]   Int[ 
1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4339
Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
 (a_))), x_Symbol] :> Simp[b^2/(a^2*d^2)   Int[(d*Csc[e + f*x])^(3/2)/(a + 
b*Csc[e + f*x]), x], x] + Simp[1/a^2   Int[(a - b*Csc[e + f*x])/Sqrt[d*Csc[ 
e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.9.19.4 Maple [A] (verified)

Time = 6.11 (sec) , antiderivative size = 226, normalized size of antiderivative = 3.01

method result size
default \(\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}+\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b +b^{2} \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )\right )}{a^{2} \left (a -b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(226\)

input
int(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)
 
output
2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2 
*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*(EllipticF(cos(1/2*d*x+1/2* 
c),2^(1/2))*a*b-EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2+EllipticE(cos(1/ 
2*d*x+1/2*c),2^(1/2))*a^2-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+b^2*El 
lipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2)))/a^2/(a-b)/(-2*sin(1/2*d*x+ 
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2 
*c)^2-1)^(1/2)/d
 
3.9.19.5 Fricas [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x, algorithm="fricas")
 
output
integral(sqrt(cos(d*x + c))/(b*sec(d*x + c) + a), x)
 
3.9.19.6 Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=\int \frac {\sqrt {\cos {\left (c + d x \right )}}}{a + b \sec {\left (c + d x \right )}}\, dx \]

input
integrate(cos(d*x+c)**(1/2)/(a+b*sec(d*x+c)),x)
 
output
Integral(sqrt(cos(c + d*x))/(a + b*sec(c + d*x)), x)
 
3.9.19.7 Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x, algorithm="maxima")
 
output
integrate(sqrt(cos(d*x + c))/(b*sec(d*x + c) + a), x)
 
3.9.19.8 Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x, algorithm="giac")
 
output
integrate(sqrt(cos(d*x + c))/(b*sec(d*x + c) + a), x)
 
3.9.19.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}}{a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \]

input
int(cos(c + d*x)^(1/2)/(a + b/cos(c + d*x)),x)
 
output
int(cos(c + d*x)^(1/2)/(a + b/cos(c + d*x)), x)